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A freely rotating sphere in a solid-body rotating flow is experimentally investigated.
When the sphere is buoyant, it reaches an equilibrium position from which drag
and lift coefficients are determined over a wide range of particle Reynolds numbers
(2 � Re � 1060). The wake behind the sphere is visualized and appears to deflect
strongly when the sphere is close to the cylinder axis. The spin rate of the sphere
is recorded. In fluids with low viscosity, spin rates more than twice as large as the
angular velocity of the cylinder can be observed. By comparing numerical results
for a fixed but freely spinning sphere with a fixed non-spinning sphere for Re � 200,
the effect of the sphere spin on the lift coefficient is determined. The experimentally
and numerically determined lift and drag coefficients and particle spin rates all show
excellent agreement for Re � 200. The combination of the experimental and numerical
results allows for a parameterization of the lift and drag coefficients of a freely rotating
sphere as function of the Reynolds number, the particle spin and the location of the
particle with respect to the cylinder axis. Although the effect of the flow rotation on
the particle spin is different in shear flow and solid-body rotating flow, the effect of
spin on lift is found to be comparable for both types of flow.

Key words: particle/fluid flows

1. Introduction
The parameterization of lift and drag forces in non-uniform flows is a long-standing

problem in fluid dynamics. A complex flow can be broken up into typical flows such
as a uniform flow, a strain flow and a (solid-body) rotating flow. In this paper we
consider a sphere in the last type of flow, and we experimentally measure the lift and
drag forces on the sphere.

The flow is obtained by rotating a horizontal liquid-filled cylinder around its
axis with constant angular velocity ω. Gravity is perpendicular to the rotation axis
(figure 1a). The sphere is buoyant and reaches a stable equilibrium position at which
all forces balance (see figure 1b). The total force on the sphere consists of a part that
is due to buoyancy and gravity, drag, lift, inertia (or pressure gradient) and added
mass. The last two forces are relevant even in this steady situation of a particle in its
equilibrium position, as a result of the spatial acceleration of the undisturbed ambient
flow. We obtain the steady-state drag and lift by measuring the equilibrium position.
Furthermore we measure the particle spin rate. The same arrangement was used for
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Figure 1. (a) Geometry of a sphere in a rotating cylinder. Here the cylinder rotates
counterclockwise with constant angular velocity ω. (b) Force balance; FG represents the
gravitational force and FB the buoyancy force; FD is the drag force, FL the lift force, FA the
added mass force and FI the inertial or pressure gradient force.

studying an air bubble in Naciri (1992), Bluemink et al. (2005) and Van Nierop et al.
(2007) and recently in Rastello et al. (2009). The set-up presently considered has a
larger diameter (by a factor of 5) compared with that in Van Nierop et al. (2007) so
that wall effects are far less likely to influence the results and relative errors can be
reduced by considering equilibrium positions farther away from the cylinder axis.

This paper builds on the work of Bluemink et al. (2008) in which we discussed the
spin rate of a sphere in several flow types and numerically determined lift and drag
coefficients for a fluid in solid-body rotation. We observed an increase in the lift force
due to the particle spin, further discussed in § 2.3. We use the results of Bluemink
et al. (2008) and extend the analysis. From the numerical results, we show here the
possibility to split the lift force in a part that is due to the flow and a part that is due
to the particle spin, and we apply this to the experimental results.

In the experimental system we study a free sphere kept into place mainly by
a balance between buoyancy and drag. Therefore the present situation has some
resemblance to that of a light particle rising at constant velocity in a stationary fluid,
described by Jenny, Bouchet & Dus̆ek (2003) and Jenny, Dus̆ek & Bouchet (2004),
among others. From these results we know that a sphere displays path instability and
will not follow a rectilinear path for a sufficiently high Reynolds number (Karamanev,
Chavarie & Mayer 1996; Jenny et al. 2003, 2004; Veldhuis et al. 2005). This may
affect the observations in our experiment. Path instability is coupled with wake
instability (Mougin & Magnaudet 2002). In a uniform flow the wake behind a
particle is steady and axisymmetric up to Re ≈ 212. From 212 < Re < 274 the wake
is still steady but non-axisymmetric, though there is planar symmetry.

Several authors have studied the trajectory of particles in fluids in solid-body
rotation. A full survey is given in Bluemink et al. (2008); here we mention in particular
the experimental results of Candelier, Angilella & Souhar (2004, 2005, Shaw et al.
2006), where the behaviour of particles and bubbles falling and rising in a system
with a vertical rotation axis was studied and the lift force was determined.

Bagchi & Balachandar (2002b) simulated a sphere spinning freely in a solid-body
rotating fluid. However, as shown in Bluemink et al. (2008), their results for particle
spin and lift are different from our experimental and numerical results for the same
flow type.



Drag and lift forces on particles in a rotating flow 3

The remainder of this paper is structured as follows. In § 2 we address the forces
and revisit the numerical results for a solid-body rotating flow of Bluemink et al.
(2008). We parameterize the lift for a spinning and a non-spinning sphere and analyze
the influence of the spin on the lift force. Section 3 addresses the experiments in
detail and compares the experimental results with the previously obtained numerical
results. In § 4 we state the main conclusions of this paper.

2. Modelling of the forces on the sphere
In this section we consider the forces on the sphere and revisit the numerical results

for a freely spinning sphere with a fixed centre reported in Bluemink et al. (2008).
In that paper the spin rate of a sphere under torque-free conditions in several types
of flow was considered. The reader is referred to that work for numerical details. In
this section we will address the solid-body rotating flow, and in particular we will
study the difference in lift coefficient for a non-spinning sphere and a freely spinning
sphere and extend the analysis of these results. To render this paper self-contained
some definitions and results of Bluemink et al. (2008) are repeated.

The situation is different from the experiment, since the particle centre is pinned
in the numerical simulations. However, we expect no difference in behaviour for free
and fixed spheres, since the numerical simulations are in the regime Re � 200 and
thus below the critical Reynolds number at which the particle trajectory of a freely
rising sphere deviates from a straight vertical line. When reaching Reynolds numbers
above 200 we may expect the dynamics of the particle to change drastically as a
result of path instability.

2.1. Effective forces

For a sphere at moderate-to-large Reynolds number subject to a gravitational field,
a widely used equation of motion is (Magnaudet & Eames 2000; Mazzitelli, Lohse &
Toschi 2003)

(ρCA + ρp)V
dv

dt
= ρV (CA + 1)

DU

Dt
+ ρV CL(U − v) × (∇ × U)

+
1

2
ρCDA|U − v|(U − v) + (ρp − ρ)V g, (2.1)

where v is the sphere velocity, g the gravitational acceleration, ρ the liquid density
(greater than ρp the density of the sphere), V the sphere volume and A the cross-
sectional area of the sphere; U is the velocity of the undisturbed ambient flow taken
at the centre of the sphere; CA is the added mass coefficient and has the value 1/2 for
a sphere; CD and CL are the drag and the lift coefficient. The lift force as included in
(2.1) assumes that lift is only due to vorticity. It is well known (see e.g. Jenny et al.
2003, 2004) that wake instability also generates lift in the absence of flow vorticity.
The results to be described below imply that this is a minor effect over most of our
parameter range, which is further diminished by the averaging procedure that we
follow in determining the equilibrium position of the sphere.

2.2. Direct numerical simulation results revisited and governing simulation parameters

To describe the numerical simulations of the flow past a sphere of radius R immersed
in a solid-body rotational flow it is convenient to adopt a slightly different coordinate
system from the one depicted in figure 1(b). Since, experimentally, the angle φ is
found to be very close to π in the parameter range covered by the simulations, we
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place the sphere on the y-axis and shift the origin to its centre. In this new coordinate
system the undisturbed flow at the centre of the sphere is given by

U(x, y) = −ωy êx + (ωx − U0)êy, (2.2)

in which −U0 is the undisturbed velocity at the centre of the sphere, corresponding
to ωre in the polar coordinates of figure 1(b).

The relevant dimensionless numbers which can be set in the numerical simulations
are the particle Reynolds number

Re =
2RU0

ν
, (2.3)

with ν the dynamic viscosity of the fluid, and the vorticity parameter

Srω =
2ωR

U0

, (2.4)

which non-dimensionalizes the flow vorticity 2ω.
As response parameters we will consider the lift and drag coefficients and the

particle spin rate. The drag coefficient CD and the lift coefficient CL, which are for
the position of the sphere in the simulations in respectively the vertical and the
horizontal direction, are obtained by balancing the forces in (2.1) in the x-direction
and the y-direction defined by (2.2),

Fy = (ρ − ρp)Vg +
1

2
CDρπR2U 2

0 , (2.5)

Fx = ρV CL[U × (∇ × U)] · êx + ρV (CA + 1)[U · ∇U] · êx. (2.6)

2.3. Decoupling the spin-induced lift from the flow-induced lift

The numerical results in Bluemink et al. (2008) were obtained with the direct numerical
simulation (DNS) method Physalis (Zhang & Prosperetti 2005), a combination of a
finite-difference and a spectral method. Figure 2 shows the drag and lift coefficients
for a sphere in a solid-body rotating flow as functions of the Reynolds number,
with the vorticity parameter Srω = 0.1. The numerical results for the drag coefficient
(figure 2a) show good agreement with a much-used standard drag curve (solid line)
for uniform flow,

CD =
24

Re
(1 + 0.15Re0.687), (2.7)

(Clift, Grace & Weber 1978), even though the flow is not uniform. The open symbols
indicate non-rotating spheres and the closed symbols freely rotating ones. It is clear
that the spin has only a tiny effect on the drag coefficient.

The computation of the lift coefficient is more delicate than that of the drag
coefficient. Since there are not many data points with which we can compare
our results for a sphere in a solid-body rotating flow, the finite-volume code
Jadim (Magnaudet, Rivero & Fabre 1995; Legendre & Magnaudet 1998) was used
to validate the Physalis results by simulating non-rotating spheres. For details on
the method, see Magnaudet et al. (1995) and Legendre & Magnaudet (1998). We
used 100 × 56 × 34 nodes in the (ξ , η, φ) directions respectively. Both methods yield
comparable results for the lift coefficient of a non-rotating sphere (open symbols in
figure 2b), indicating that the Physalis results for non-rotating spheres are reliable. A
fit through the Physalis data for a non-rotating sphere in the regime 20 � Re � 200
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Figure 2. Numerical results for CD and CL for a sphere in a rotating flow obtained with two
different numerical codes; Srω = 0.1 for all cases. Physalis data are from Bluemink et al. (2008).
The abbreviations ‘frs’, ‘nrs’ and ‘csb’ stand for freely rotating sphere, non-rotating sphere and
clean spherical bubble. (a) Drag coefficient versus Reynolds number. (b) Lift coefficient versus
Reynolds number. The dotted line is the fit (2.8) through the Physalis data of a non-rotating
sphere. The solid line is the combination (2.15) of (2.8) and the contribution that is due to
the Magnus-like lift (2.14). The thinner line just above is a similar combination of the fits
with (2.12) of Bagchi & Balachandar (2002a) instead of (2.14). The fit for a clean spherical
bubble is taken from Magnaudet & Legendre (1998).

yields

CL,nrs = 0.51 log10 Re − 0.22, (2.8)

with CL,nrs the lift coefficient for a non-rotating sphere.
For freely rotating spheres the lift coefficient is higher because a Magnus-like lift

contribution is added owing to the sphere spin. The sphere spins freely and adopts the
spin rate dictated by the condition of zero torque. It affects the lift force as indicated
by the numerical work of e.g. Kurose & Komori (1999), Bagchi & Balachandar
(2002a) and Bluemink et al. (2008). For a sphere spinning with an imposed angular
velocity Ω in a uniform flow at small Reynolds number Rubinov & Keller (1961)
calculated lift and drag forces, accurate to terms O(Re). They found for the lift to
this order

FL = ρπR3Ω × U. (2.9)

We cannot expect to be able to add a similar contribution to the lift force on our freely
spinning sphere, since we are in a Reynolds number regime in which superposition
is not allowed. However, we can expect the lift force to increase as the sphere spin
increases. Lin, Peery & Schowalter (1970) calculated for a simple shear flow that the
torque-free spin rate of a sphere decreases as the inertial effect increases. In contrast
with that are the results of Bluemink et al. (2008), where a sphere in a solid-body
rotating flow was found to spin faster as the inertial effect increased. Therefore the
spin has a significant effect on the lift force at higher Reynolds number in a solid-body
rotating flow.

Most DNS results for lift and drag have been obtained for particles in a linear shear
flow, for example Dandy & Dwyer (1990), Kurose & Komori (1999) and Bagchi &
Balachandar (2002a). All these results show that the lift coefficient decreases as the
Reynolds number increases. Dandy & Dwyer (1990) simulated a fixed non-rotating
sphere in a linear shear flow at different shear rates. Kurose & Komori (1999)
simulated rotating and non-rotating spheres in a linear shear flow for 1 � Re � 500.
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They found a change in the sign of the lift coefficient for non-rotating spheres at
Re = 60, with the lift force acting from the low-fluid-velocity side to the high-fluid-
velocity side below Re = 60. At high Reynolds numbers they could not separate the
lift force into a part owing to shear and a part owing to sphere spin, since in their
view the flow separation is strongly affected by both shear and rotation. It should
be noted that their sphere spin rate was imposed. Bagchi & Balachandar (2002a)
allowed the sphere to rotate freely and in contrast found that they could decouple
the Magnus-like lift (because of particle spin) and the shear-induced lift in the range
0.5 � Re � 200, i.e.

FL(Re, Sr, ΩP ) = FL(Re, Sr = 0, Ω) + FL(Re, Sr, Ω = 0). (2.10)

Here FL(Re, Sr, ΩP ) is the lift on a freely spinning sphere in a shear flow with
dimensionless shear rate Sr; FL(Re, Sr = 0, Ω) is the lift on a sphere in a uniform
flow with imposed spin rate Ω (the torque-free spin rate that the sphere would
attain in a shear flow with Sr); and FL(Re, Sr, Ω = 0) is the lift on a non-spinning
sphere in a shear flow with Sr . They approximated the Magnus-like lift due to the
shear-induced spin by

FL(Re, Sr = 0, ΩP ) = FL,Mg ≈ 0.55ρπR3ΩP × U, (2.11)

i.e. 55 % of the Rubinov & Keller (1961) result for a sphere with an imposed spin
in a uniform flow. With (2.6) as the definition for CL the contribution that is due to
the sphere spin on the lift coefficient according to Bagchi & Balachandar (2002a) in
(2.11) is

CL(Re, Sr = 0, ΩP ) = CL,Mg ≈ 0.55
3

8

ΩP

ω
. (2.12)

As indicated by Bagchi & Balachandar (2002a) the decoupling is possible when
the particle spins freely. The lift effects behave linearly in this case up to a much
higher Reynolds number than observed by Kurose & Komori (1999). They expected
the decoupling to be valid over a Reynolds range much wider than they considered.
Rastello et al. (2009) used tracer particles and showed that a bubble surface spins
in the solid-body rotating flow. They used their measured spin rates in combination
with (2.11) to explain the increased lift they measured as a result of that spinning.

In our numerical results the normalized spin rate for a particle in rotating flow is
fitted, as a function of Re, for Re � 200 as (see the results in Bluemink et al. 2008)

ΩP

ω
= 1 + 0.0045Re. (2.13)

Adding the Magnus-like lift to the lift coefficient for non-rotating spheres should
result in the lift coefficient for spinning spheres, if the effects behave linearly as
indicated in (2.10). Similar to (2.12) the data in figure 2(b) show that a good fit (for
Re � 200) for the spinning sphere is obtained if a contribution for the Magnus-like
lift of

CL,Mg ≈ 0.5
3

8

ΩP

ω
≈ 3

16

ΩP

ω
(2.14)

is added. The lift coefficient then depends on Re as

CL = CL,nrs +
3

16

ΩP

ω
= 0.51 log10 Re − 0.22 +

3

16
(1 + 0.0045Re). (2.15)

The thick solid line in figure 2(b) represents (2.15). The thinner line above it is the
same fit with (2.12) instead of (2.14) to model the contribution of the Magnus-like lift.
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The numerical data for a freely rotating sphere in figure 2(b) show good agreement
with (2.15). We can therefore conclude that in the range 5 � Re � 200 the effects of the
Magnus-like lift and the lift induced by the flow can be decoupled in the same fashion
as (2.10) for this rotating flow. We also find that the factor by which the Magnus-like
lift should be multiplied before it is added to the flow-induced lift is very close to
that found by Bagchi & Balachandar (2002a) for linear shear flow. These findings are
remarkable, since the behaviour of the sphere spin in a linear shear flow is totally
different from that in a solid-body rotating flow. Yet the effect on the lift force is the
same. The dash-dotted line in figure 2(b) represents a fit of the data of Magnaudet &
Legendre (1998) for a clean spherical bubble in a liquid in solid-body rotation. It
is clear that these curves show a completely different trend. Since the bubble is not
allowed to deform in the simulation, this difference is solely due to different boundary
conditions at the surface.

3. Experiments
3.1. Governing parameters

The governing parameters of the experimental system are the gravitational accele-
ration g, the liquid viscosity ν, the liquid density ρ, the particle density ρp , the particle
radius R and the cylinder angular velocity ω. Three independent dimensionless groups
can be formed from these parameters, for example

Ta =
2R2ω

ν
, Ga =

2R
√

2R(1 − ρp/ρ)g

ν
,

ρp

ρ
, (3.1)

in which Ta is the Taylor number, Ga the Galilei number and ρp/ρ the density ratio.
Note that the Galilei number and the density ratio are the dimensionless control
parameters in the system of a freely falling and rising sphere studied by Jenny et al.
(2003, 2004). Their observations may thus be relevant for our system.

The quantities measured in the experiments are the equilibrium position of the
sphere (re, φe) and its spin rate ΩP . The equilibrium position allows us to determine
the lift and drag coefficients. The spin rate is measured because it has a significant
influence on the lift coefficient.

The relationship between the equilibrium position of the sphere and the lift and
drag coefficients is obtained by setting v = dv/dt = 0 and U = ωre êφ with re as
shown in figure 1(b). After decomposing the buoyancy force in the radial and angular
directions, solving the equation of motion (2.1) gives

tan φe =
8

3

R

CDre

(2CL − 1 − CA), (3.2)

re = − g(ρ − ρp) sin φe

ρω2(2CL − 1 − CA)
. (3.3)

Equations (3.2) and (3.3) can be solved to see the effect of the governing parameters
on the equilibrium position re of the particle. If the drag coefficient is estimated by
CD = 24/Re, re can be expressed as

re =
R2(ρ − ρp)g

ρω
√

(81/4)ν2 + R4ω2(2CL − 1 − CA)2
. (3.4)
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For very viscous fluids, ν � R2ω, we find that the distance of the particle from the
cylinder axis depends on the cylinder rotation rate as

re

R
= 2

(1 − ρp/ρ)gR

9ν

1

ω
=

1

18

Ga2

Ta
, (3.5)

whereas for fluids with a very low viscosity

re

R
=

(1 − ρp/ρ)g

R(2CL − 1 − CA)

1

ω2
=

1

2

1

(2CL − 1 − CA)

Ga2

Ta2
. (3.6)

The dependence of the drag coefficient CD and the lift coefficient CL on re and φe is
(rewriting (3.2) and (3.3))

CL =
1

2

[
1 + CA − ρ − ρp

ρ

g sinφe

reω2

]
, (3.7)

CD = −8

3

ρ − ρp

ρ

R

r2
e w

2
g cosφe. (3.8)

Since the undisturbed velocity at the particle centre is U0 = ωre, re enters the Reynolds
number (2.3) and the Froude number,

Re =
2RU0

ν
=

2Rreω

ν
, F r =

U 2
0

2Rg
=

r2
e ω

2

2Rg
, (3.9)

and the vorticity parameter (2.4),

Srω =
2ωR

U0

=
2R

re

. (3.10)

3.2. Experimental set-up

In the experiment a sphere is inserted in a horizontal cylinder filled with a liquid. The
cylinder has a radius of 250 mm and a length of 500 mm (outer dimensions). Its wall
and end caps are made of Plexiglas that is 15 mm thick. Two steel rods, with a rubber
coating to prevent slip, support the cylinder, and a third rod is mounted above it. One
of the rods is connected to an AC servo motor by a belt and drives the rotation. The
cylinder rotates with frequencies between 0 and 2 revolutions s−1 or Hz; the rotation
rate can be set precisely. The cylinder can be pivoted to an almost upright position
for filling purposes. For the definition of the coordinates, see also figure 1(a). After
the cylinder is set into rotation some time is allowed to reach a steady state.

The sphere position is determined by projecting its shadow on a screen (an opal
diffusing glass plate of 200 × 250 mm). For this purpose a narrow laser beam is
broadened into a parallel beam with a diameter of about 8 cm. The beam passes
through the cylinder, creating a bright spot on the screen located at the other side
of the cylinder (figure 3). A grid with 1 cm spacing is attached to the screen. The
shadow of the particle on the grid is recorded with a camera at 50 fps. The camera is
connected to a computer, and the position of the particle shadow with respect to the
grid is determined by image analysis. The cylinder axis is determined by recording
marks on its end caps for a full rotation. These marks trace circles whose centres,
determined by image analysis, give the position of the centres of the end caps with
respect to the grid. Measuring the location of the sphere along the cylinder axis and
linearly interpolating the centres of the end caps with respect to the grid provides the
position of the cylinder axis at the axial plane of the sphere with respect to the grid,
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Percentage
Liquid of glycerine ν ρl Re Symbol Uncertainty
number (by weight) mm2 s−1 g cm−3 range in figures Re Srω CD CL

1 89 170.1 1.232 1.8–1.9 � 4 % 2 % 5 % >100 %
2 85 91.1, 86.0 1.222 5.2–5.5 � and � 3 % 1 % 4 % 50%
3 80 55.2 1.211 11.0–11.5 � 4 % 1 % 4 % 20%
4 75 28.1 1.194 24.7–29.9 � 4 % 2 % 5 % 10%
5 68 15.4 1.174 59.9–68.0 � 4 % 1 % 3 % 10%
6 60 9.3 1.154 107–127 � 10 % 1 % 3% 10%
7 48 4.5, 4.8 1.121 234–297 � and � 4 % 1 % 4 % 10%
8 30 2.3 1.071 450–574 � 4 % 2 % 4 % 10%
9 0 0.98 0.997 687–1060 � and � 3 % 2 % 4 % 10%

Table 1. Properties of the experimental liquids and order of magnitude of the uncertainties
for the different liquids.

X

Z Camera Screen

Cylinder

Laser

L2 L1

Figure 3. Top view of the optical parts of the experimental set-up; L1 is a lens with f =
10 mm, and L2 is a lens with f = 1000 mm.

thus correcting for misalignment between the laser and the cylinder axis. Since there
is no constraint for motion in the direction of the cylinder axis, the sphere may also
move in the (axial) z-direction. However, that motion is over a much longer time scale
compared to that in the xy-plane; it usually takes several minutes for the particle to
translate from one end cap of the cylinder to the other, whereas the frequency of the
circling motion coincides with that of the cylinder.

To cover a wide range of Reynolds numbers, nine mixtures of glycerine and
water with different viscosities were prepared. Table 1 shows the different liquids,
together with the mass percentage of glycerine. It also shows the kinematic viscosity,
the fluid density and the Reynolds range covered by each liquid. The viscosity was
measured by means of several U-tube and Ubbelohde viscometers, and the density was
measured with a pycnometer. For some liquids two different viscosities, corresponding
to different temperatures, are indicated in table 1. The temperature was monitored
and recorded during the experiment, and the viscosity was determined at the same
temperature.

To obtain a minimum excursion around the equilibrium position, a sphere with
a density much lower than that of water is the best choice. However, such spheres
are generally hollow and have an inhomogeneous mass distribution, or they are
manufactured in such a way that sphericity is not assured. To have good sphericity
and mass distribution, low-density polyethylene (LDPE) spheres with a radius of
3.97 mm and a density ratio of ρp/ρwater ≈ 0.93 were used. For the viscous fluids ρp/ρ
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Figure 4. Particle trajectories for a sphere in liquid 4 (table 1) in the xy-plane. The cross at
(0,0) is the cylinder axis. The position is normalized by the radius of the sphere. For each
trajectory the cylinder rotation frequency ω/2π and the Reynolds number Re are indicated.

is smaller than for water (since these fluids have a higher density). As a result the
equilibrium position is more stable for the lower-numbered liquids in table 1. To
determine the spin rate, the sphere is marked and its spin is recorded by a video
camera. In water (liquid 9 in table 1) the behaviour of a second sphere with a radius
of 3.18 mm and a density ratio of ρp/ρwater ≈ 0.94 was also studied, although the
spin rates were not measured. Measurements for this sphere are indicated by open
triangles pointing to the left (�).

The experimental procedure consists of filling the tank with one of the fluids
and inserting the sphere. Bubbles initially remaining in the cylinder are removed by
tilting the tank somewhat and rotating it slowly. The bubbles drift to a side of the
cylinder, where they can be removed at an air inlet by adding fluid. When the tank is
completely filled with fluid, the cylinder is tilted back to its horizontal position and
set into rotation. Waiting times of 10 min up to 1 h may be needed for the spin-up
of the fluid (for the estimate of spin-up times, see Bluemink et al. 2008) and to allow
a particle to reach its equilibrium position and torque-free spin rate (which takes a
long time especially in the case of highly viscous fluids).

An error analysis by propagating the errors in re, φe, ρb, R, ρl , ν and ω shows that
for the liquids with high viscosity the measurement uncertainty of the lift coefficient
is high. The error in the measurement of the position is estimated to be 1 mm in the
x-direction and 0.5 mm in the y-direction for the experiments in which the particle
displays only tiny excursions from its equilibrium position. For the measurements at
which the sphere circles around its equilibrium position, the error in position was
estimated to be a few millimetres in both directions. An error in the angle 	φe

propagates strongly in the error of the lift coefficient. The error in the drag coefficient
depends more strongly on the relative error in the radial distance from the cylinder
axis 	re/re. In the last four columns of table 1 an indication of the measurement
uncertainty for each liquid is shown. These values are a good representation for the
measurement uncertainty of most data points.

3.3. Results: particle trajectories

Figures 4–7 show particle trajectories in liquids 4, 7, 8 and 9. For the definition
of the xy-plane, see figure 1(a). In the figures the cylinder rotation frequency ω/2π
and the Reynolds number Re are indicated for each trajectory. Figure 4 is a typical
representation of the behaviour of the sphere in liquids 1–6. In these liquids the
sphere remains more or less stationary at an equilibrium position. In some cases it
makes a larger excursion around a fixed point. However, the trajectory it traces is
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Figure 5. Particle trajectories for a sphere in liquid 7 (table 1) in the xy-plane. The cross at
the very right at (0,0) is the cylinder axis; the direction of rotation is down in this region. The
position is normalized by the radius of the sphere. For each trajectory the cylinder rotation
frequency ω/2π and the Reynolds number Re are indicated.
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Figure 6. Particle trajectories for a sphere in liquid 8 (table 1) in the xy-plane. The cross at
(0,0) is the cylinder axis. The position is normalized by the radius of the sphere. For each
trajectory the cylinder rotation frequency ω/2π and the Reynolds number Re are indicated.

very regular and appears to be spiralling inward over several hours. We define the
effective equilibrium position as the centre of the trajectory.

Figure 5 represents the trajectories in liquid 7 and shows the transition of the
sphere resting in its equilibrium position (for the higher cylinder frequencies) to a
somewhat erratic path around it (for the lower cylinder frequencies). For Re � 274
the trajectories are regular, and most of the time the radius of the trajectory is much
smaller than the particle radius. For Re � 283 the trajectories become irregular and
their radii are larger. Allowing a longer waiting time has no effect on the trajectory;
the path remains erratic. The qualitative change in trajectories occurs between Re =
274 and Re = 283. Since this is close to the Reynolds number at which a particle in
a quiescent fluid stops rising in a rectilinear motion and starts displaying spiralling
or zigzag motion, this change in behaviour is probably connected to path instability
(see § 1).

For liquids 8 and 9 (Re � 450; figures 6 and 7) Re is everywhere above this critical
Reynolds number. Indeed, we observe that the particle trajectory has changed from
small and nearly circular around the equilibrium position to a totally erratic path
around a fixed point. In a quiescent fluid the deviation of a rising sphere from
vertical motion is in any plane containing the gravitational acceleration. For the
present rotating system, the sphere motion is principally in the xy-plane (the plane
perpendicular to the background vorticity) shown in figures 6 and 7, i.e. the plane
spanned by the gravitational and the centripetal acceleration.

When the sphere is close to the cylinder axis (i.e. the vorticity parameter Srω is
high) its trajectory is no longer erratic but a regular reproducible circle. When the
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Figure 7. Particle trajectories for a sphere in liquid 9 (table 1) in the xy-plane. The cross at
(0,0) is the cylinder axis. The position is normalized by the radius of the sphere. For each
trajectory the cylinder rotation frequency ω/2π and the Reynolds number Re are indicated.

particle is followed for several periods, its path is observed to overlay itself. The circle
travelled by the particle has a radius larger than twice the particle radius.

For Reynolds numbers larger than 274 wake dynamics causes fluctuating forces on
the sphere, which have a nonlinear character and may result in limit cycles around a
fixed point, instead of an equilibrium position. The effective equilibrium position is
determined by taking the average over a complete cylinder rotation. The time needed
for a full cylinder rotation equals the time needed for the sphere making a full circle
around this effective equilibrium position; i.e. the cylinder rotation frequency and
the sphere excursion frequency are the same for the regular trajectories. Averaging
over the sphere trajectory is appropriate for the small trajectories or the trajectories
that are located sufficiently far from the cylinder axis. However, for the large circular
trajectories close to the cylinder axis it is unclear what flow field is seen by the particle.
As a result the data with a high vorticity parameter are less reliable.

3.4. Results: particle image velocimetry images of the sphere wake

The phenomena discussed in § 3.3 are most probably a result of the wake structure
behind the sphere. Since the sphere is held in its equilibrium position by a balance of
forces, the situation is similar to a sphere rising freely at constant velocity. We expect
to encounter the analogues of path and wake instability discussed in § 1. However,
owing to rotation these instabilities may be different from those affecting a freely
rising sphere at terminal velocity in a quiescent fluid. It is therefore of interest to
study the wake behind the sphere in the solid-body rotating flow.

To visualize the flow around a particle, the fluid (water) was seeded with hollow
glass spheres with a diameter of 15 μm. The wake in the xy-plane (figure 1a) was
visualized by standard particle image velocimetry (PIV) measurements at cylinder
rotation frequencies of 0.2, 0.5 and 1.0 Hz. The resulting flow fields (indicated by
arrows) and vorticity fields (indicated by colour) can be seen in figures 8(a)–8(c).
For each case we tried to determine the vortex shedding frequency. Vortices appear
to be shed on both sides, but the shedding on the high-fluid-velocity side is more
pronounced. This is in contrast with Sakamoto & Haniu (1995), who studied the
wake of a fixed particle in a linear shear flow. They found that at the appearance of
vortex shedding, vortex loops are detached always on the high-fluid-velocity side, in
contrast to a uniform flow without shear, where the detachment point of the vortex
loops alternates.

From the PIV results we cannot conclude with certainty that vortex shedding occurs
solely in the xy-plane. However, since the circling motion in the xy-plane discussed
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(a) (b)

(c)

Figure 8. Flow field (indicated by arrows) and vorticity (indicated by colour, with green
representing background vorticity). The sphere surface is indicated with a red circle. The
high-fluid-velocity side is on the left side of the sphere. (a) The red line indicates the vertical
position of the cylinder axis; the axis is out of sight. The sphere radius R is 3 mm; the cylinder
rotation frequency ω is 0.2 Hz; Re ≈ 900 and Srω ≈ 0.05. The vortex shedding frequency is
about 4 Hz. (b) R = 4 mm, ω = 0.5 Hz, Re ≈ 600, Srω ≈ 0.33. The vortex shedding frequency
is about 3.8 Hz. (c) The red cross indicates the cylinder axis; R = 3 mm, ω = 1.0 Hz, Re ≈ 360,
Srω ≈ 0.67. The vortex shedding frequency could not be determined.

in § 3.3 is much more pronounced than the motion along the cylinder axis, we may
expect that the centres of the vortices remain mainly in one xy-plane.

In figure 9 the shedding process can be seen in more detail. We see the first image
reproduced in the 14th, indicating that the shedding process has a frequency of about
4 Hz.

An interesting aspect of figures 8(a)–8(c) is the deflection of the wake which may
return to the sphere as it is convected by the rotation of the liquid, as sketched
in figure 10(a). This may occur if the wake has not diffused completely after one
rotation or is not deflected sufficiently towards the cylinder axis. There might be
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Figure 9. Sequence of PIV images for an LDPE sphere of 6 mm diameter with f c = 0.2 Hz.
The images are ordered in horizontal lines. The arrows indicate the flow field, and the colour
of the arrows is a measure of the magnitude of the velocity. From the second to the last image
one cycle is completed, and consecutive frames are 0.02 s apart. The vortex shedding frequency
is about 4 Hz.

some similarity with a sphere located in the wake of another sphere upstream of it
as indicated at the right side of figure 10(a).

We address first the wake diffusion and estimate for which set of parameters the
wake length is such that it can interact with the sphere in the next revolution. The
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(a)

(b)

(c)

(d)

Figure 10. Left: sketch of the wake (between the dotted lines) behind the sphere. (a) The
trajectory of the wake for the hypothetical case in which no deflection of the wake occurs.
Particle equilibrium position (b) far from the cylinder axis, (c) at intermediate distance and
(d ) close to the cylinder axis. The crossing of the solid lines denotes the cylinder axis. Right:
wake interaction of the sphere with the wake generated one period before. The polar angle
is projected on a vertical line. The top particle represents the moment of wake generation.
The bottom (dashed line) particle represents the moment at which this wake reaches the
sphere.

velocity defect vs along the wake axis in a uniform flow is (Landau & Lifshitz 1987,
p. 70)

vs =
FD

4πρνs
, (3.11)

where s is the coordinate along the wake and FD is the drag force. After a full
rotation s = 2πre, and for wake interaction to be negligible the velocity defect should
be much less than the velocity of the undisturbed incident flow ωre. This holds
when

CD

16π

R2ω

ν
� 1. (3.12)
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As a result we may expect wake interaction due to the rotation of the fluid when

Ta >
32π

CD

. (3.13)

For the last three liquids in table 1 Ta ≈ 50 for most rotation rates, and thus wake
interaction as indicated in figure 10(a) may be present.

Although the wake may survive a full cylinder revolution, it will not necessarily
impinge on the sphere. From the momentum equation in the radial direction (∂p/∂r =
ρuθ

2/r , with p the pressure and r and θ the radial and angular directions) we see
that for a given pressure gradient, the trajectory of the retarded fluid in the wake
adopts a smaller radius. As a result the wake is deflected towards the cylinder axis. On
the left side of figure 10 sketches of this deflection for different sphere positions are
shown. For a sphere far away from the cylinder axis as in figure 8(a) (and sketched in
figure 10b), the Reynolds number is high and the wake is long, but it will not interact
with the sphere after a full rotation. In figure 8(b) (sketched in figure 10c) there may
be interaction with the sphere. For even higher rotation rates, figure 8(c) (sketched in
figure 10d ) shows that the wake is strongly deflected towards the axis of the cylinder.

At the right side of figure 10 the effect of the wake on the sphere in the next
revolution is sketched. Case (a) is hypothetical: the wake survives a full rotation and
is not deflected at all. As a result the sphere feels its own wake as if it were the
wake of an upstream sphere. In case (b) the wake also survives a full revolution
but now is deflected. As a result the sphere will not feel its own wake. For a higher
cylinder frequency as in (c) the wake is also deflected. The wake is shorter because
the particle Reynolds number is lower at higher rotation frequencies. However, the
path over which the wake may decay is also shorter. It is as if the two spheres in
the representations at the right side of figure 10 were closer. In this case interaction
occurs. For the last situation the deflection is too strong for interaction. It is difficult
to formulate quantitative criteria for the transition among the different regimes.
The above discussion serves merely to indicate possible wake-interaction scenarios,
relevant for the interpretation of the data in the next sections.

3.5. Results: dependence of lift and drag on the governing parameters

This section discusses the dependence of the equilibrium position (re, φe), the drag
and lift coefficients and the normalized particle spin rate on the governing parameters
in terms of the dimensionless groups defined in (3.1). In the figures in this and the
next section, results for the different liquids can be recognized by the symbols in the
last column of table 1. In particular, the low-viscosity fluids are identified by � (liquid
8) and � and � (liquid 9).

Figure 11 shows the dependence of the equilibrium position of the particle on
the Taylor number Ta . For each liquid the viscosity is constant, and an increase in
Ta indicates a higher rotation frequency of the cylinder. As the cylinder rotation
rate increases, the radial distance of the particle decreases, and the particle finds its
equilibrium closer to the cylinder axis (figure 11a). The equilibrium angle φe is very
close to π for Ta < 1 (i.e. for the more viscous fluid mixtures). For liquids 6–9 we
see an increase with Ta at first, and as Ta increases further, the angle shows a sharp
decrease for all liquids. However, the peaks for the different liquids do not occur at
the same value of Ta .

From (3.7) and (3.8) we see that re and φe are related to the lift and drag coefficients.
Therefore we inspect in figure 12 the effect of Ta on the lift and drag coefficients,
as well as on the particle spin rate. The drag coefficient decreases when the viscosity
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Figure 11. (a) Normalized radial distance of the particle centre and (b) angle with respect to
the horizontal as a function of Ta (where ω is the primary control variable). The symbols are
defined in table 1.
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Figure 12. (a) Drag coefficient, (b) lift coefficient, (c) normalized particle spin rate and
(d ) lift coefficient corrected for spin as a function of Ta . The correction of the lift coefficient
in (d ) as compared with (b) is most prominent for liquids 8 and 9 (stars and triangles pointing
left). The dashed (through the data of liquid 9) and dash-dotted (liquid 8) lines in (c) are to
guide the eye.
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of the liquid decreases (figure 12a). Each liquid data set shows a spread over a
large range of Ta and a relatively small range of CD . The lift coefficient and the
normalized particle spin rate as a function of Ta are respectively shown in figures 12(a)
and 12(c). The normalized particle spin rate shows peaks for liquids 7–9. A relatively
small normalized sphere spin rate is observed when Ta (and consequently the cylinder
rotation rate) is small for these liquids. The particle is then located far away from
the cylinder axis. As the cylinder rotation rate increases and the particle equilibrium
position is located closer to the axis, the spin rate increases. It then decreases for
even higher cylinder rotation rates. This behaviour may be a consequence of the
scenarios described in the previous section and sketched in figure 10. For sufficiently
low Ta the ratio in (3.12) is small. The particle finds its equilibrium far from
the cylinder axis. The wake can diffuse over a long trajectory before it reaches the
particle again after one rotation and will not interact with the particle. As Ta increases,
the particle equilibrium position is located more towards the cylinder axis. Now the
sphere may interact with the wake as shown at the right side of figure 10(c). One side of
the particle is in the wake, and the other is in the undisturbed flow. As a result a
large torque acts on the sphere. Since the particle reaches a torque-free state, the
spin rate will be very high under these circumstances. As Ta increases further and
the particle is located even closer to the cylinder axis, the wake deflection may be
so strong that the particle cannot interact with its wake (figure 10d ). As mentioned
before, for spheres very close to the cylinder axis we can expect the incident flow to
be strongly disturbed by the particle.

A high spin rate of the sphere affects the measured lift coefficient. We define an
excess spin as

ΩP /ω − 1, (3.14)

since for Stokes flow the normalized spin rate ΩP /ω is 1. In figure 12(d ) the lift
coefficient is corrected for the particle spin, assuming that the extra part of the
lift coefficient that is due to the spin is given by (2.14). By subtracting the part
of the lift coefficient that is due to excess spin we find the corrected lift coefficient
CL−(3/16)(ΩP /ω−1). The effect on the lift due to the spin has only been demonstrated
for 5 � Re � 200. However, we apply (2.14) to the complete experimental data range
and evaluate the resulting lift coefficient when the part that is due to the excess spin
is subtracted. In figure 12(d ) we see that the deviation of the highest values of the lift
coefficient is smaller after correcting it for the high spin rates, in particular in liquid 9.

Figure 13 shows the dependence of the equilibrium position of the particle on the
Galilei number Ga defined in (3.1). For each liquid the Galilei number is a constant,
and the figure shows the spread of re and φe. The effect of Ga on the lift and drag
coefficients and the particle spin rate is shown in figure 14. Figure 14(a) shows a
decrease of the drag coefficient with Ga . Since the Galilei number is based on the
terminal rise velocity which is close to the undisturbed velocity in Re (which is a
result of a balance mainly between drag and buoyancy forces), this is according to
expectation. The lift coefficient in figure 14(b) shows an increasing trend with Ga
up to Ga ≈ 206. After that CL decreases. The highest lift coefficients in liquids 8
and 9 are smaller than in liquid 7. According to Jenny et al. (2004) we may expect
the critical Galilei number for which the particle trajectory becomes unstable to be
between 175 and 180 for our density ratios (ρp/ρ ≈ 0.9). The particles in liquids 1–6
should all have axisymmetric wakes at the same Galilei number in a uniform flow.
Liquid 7 (Ga ≈ 206) is in the periodic zigzagging regime. Liquids 8 and 9 are in the
three-dimensional chaotic regime. The transition to an unsteady wake coincides with
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Figure 13. (a) Normalized radial distance of the particle centre and (b) angle with respect to
the horizontal as a function of Ga .
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Figure 14. (a) Drag coefficient, (b) lift coefficient, (c) normalized particle spin rate and
(d ) lift coefficient corrected for spin as a function of Ga .

a decrease of the lift coefficient. Figure 14(c) indicates that the spread of the rotation
rates in the same liquid increases with Ga . Whereas the envelope of the highest
values of CL shows an indentation for liquid 8 in figure 14(b), this is removed when
correcting the lift coefficient for the excess particle spin (figure 14d ).
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Figure 15. (a) Normalized radial distance of the particle centre and (b) angle with respect to
the horizontal as a function of the density ratio ρp/ρ.
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Figure 16. (a) Drag coefficient, (b) lift coefficient, (c) normalized particle spin rate and
(d ) lift coefficient corrected for spin as a function of the density ratio ρp/ρ.

In figures 15 and 16 the results are plotted as functions of the density ratio
ρp/ρ. They show trends similar to those in figures 13 and 14. As the viscosity
of the liquids in table 1 decreases, the density ratio increases towards one. For a
density ratio larger than one, the equilibrium position is no longer stable; so we can
expect that the equilibrium positions become less stable for the less viscous liquids.
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Figure 17. Normalized radial distance of the particle centre as a function of
(a) Ga2/Ta and (b) Ga2/Ta2.

The effect on the particle trajectories can be seen in figures 4–7, where, generally
speaking, the excursions around the equilibrium position are larger in liquids of lower
viscosity. Figure 16 shows the trend of the lift and drag coefficient as a function
of the density ratio. For each liquid both the density ratio and the Galilei number
vary. The behaviour shown in the figure can thus be a result of a different Galilei
number instead of a different density ratio. In fact, the data for the smaller sphere
in liquid 9 (�) fall in the same range of values of CD and CL as the data in liquid
8 (�). The two liquids correspond to a different value for the density ratio but the
same Galilei number. Thus the Galilei number is a more appropriate parameter to
describe the results. Apparently, the viscosity is important to describe the drag and lift
trends.

The representation of the equilibrium position, drag and lift coefficient and spin
rate in terms of Ga , Ta and ρp/ρ has not revealed simple relationships. Comparing
the results in this section, the equilibrium angle φe is best described by the Taylor
number as in figure 11. As suggested in § 3.1, re/R may be best described by a
combination of Ga and Ta . In figure 17 we have plotted re/R versus Ga2/Ta and
Ga2/Ta2. Figure 17(a) yields the best results for the viscous fluids, as was predicted
by (3.5).

3.6. Results: dependence of lift and drag on other parameters

In figures 14(a) and 16(a) we found some collapse of the drag coefficient on to
a curve for the Galilei number and the density ratio. The lift coefficient and the
sphere spin rate cannot be represented as functions of one of the parameters Ta ,
Ga and ρp/ρ alone. In this section we will study the effects of other dimensionless
numbers on drag, lift and particle spin. We include in our analysis the measured
re/R of the system, which is a function of Ta , Ga and ρp/ρ. The equilibrium position
appears in the definition of the Reynolds number Re, the Froude number Fr (3.9) and
the dimensionless vorticity Srω (3.10). The dimensionless vorticity is the normalized
velocity difference over the sphere and therefore resembles a dimensionless shear rate.
Since in the literature lift and drag coefficients are frequently represented as functions
of the Reynolds number and the dimensionless shear rate these are obvious choices.
The Froude number expresses the relative importance of the centripetal acceleration
with the gravitational acceleration and has been indicated as a relevant parameter
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Figure 18. Drag coefficient, lift coefficient and normalized particle spin rate as a function
of Fr . The solid line in figure 18(b) is the parameterization of the lift coefficient for bubbles

according to Naciri (1992): CN
L = (1/2)(1 + CA) − 0.81/

√
Fr + 0.29/Fr . The solid line in

figure 18(d ) is a fit to the corrected lift coefficient data (3.15).

by Naciri (1992) for a bubble in a horizontally rotating system. We will therefore also
study the effect of Fr on the lift and drag coefficients and the particle spin.

The effect of Fr is shown in figure 18. The drag coefficients collapse on to one
curve, except those of liquids 8 and 9 (figure 18a). The lift coefficients in figure 18(b)
are compared with the parameterization for bubbles by Naciri (1992). Clearly, his
parameterization is not valid for solid spheres. The particle spin cannot be represented
as a function of Fr (figure 18c). However, we can correlate the high spin rates to the
peaks in the lift coefficient. Subtracting the contribution to the Magnus-like lift (2.14)
owing to the excess spin yields the corrected lift coefficient (figure 18d ). The data are
fitted as a linear function of Fr ,

CL − 3

16

(
ΩP

ω
− 1

)
= 2.52 Fr + 0.30. (3.15)

This fit describes the dependence of CL on Fr for most data reasonably well. Again
we find that the correction of the lift that is due to excess particle spin improves the
collapse of the data on to a single curve.

We now consider the dependence on the Reynolds number and the vorticity
parameter. For the first three liquids in table 1 the Reynolds number is more or less
constant. This is a direct result of substituting (3.5) in the definition of the Reynolds
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number (3.9) and remembering that the viscosity and particle radius are constant
in each liquid. For fluids with a low viscosity the radial distance decreases with the
square of the cylinder rotation rate (3.6), and thus the Reynolds number is modified
by varying the rotation rate of the cylinder. As a result, both the Reynolds number
and the vorticity parameter depend on the cylinder rotation rate for the less viscous
fluids and cannot be varied independently. From linear shear flow results we know
that the shear rate has an effect on drag and lift. We may expect similar behaviour
for our vorticity parameter. Moreover, the vorticity parameter indicates the proximity
of the sphere to the cylinder axis. As indicated in § 3.4 the distance between the
sphere and the cylinder axis affects the wake-interaction behaviour. In an attempt
to study the effects of both the Reynolds number and the dimensionless vorticity
simultaneously, we plot the results as a function of the Reynolds number, indicating
the vorticity parameter by a colour in figure 19.

In figures 19 and 20 the experimental and numerical data are compared. The
numerical data points from figure 2 are represented by (blue) circles. Figure 19
displays all experimental data, whereas in figure 20 only data points for which
Srω � 0.1 are shown. This allows an adequate comparison between numerical and
experimental results, since for the numerical results Srω = 0.1.

In figures 19(a) and 20(a) the experimentally determined drag coefficients are
compared with the standard drag curve and the numerical data. It is clear from
figure 19(a) that as the vorticity parameter increases, the drag coefficient generally
increases. For the experimental data with Srω � 0.1 there is an excellent agreement of
the experimental data with the standard drag curve, as shown in figure 20(a).

Figures 19(b) and 20(b) show the lift coefficient. The solid line represents the fit to
the numerical data (2.15). Figure 20(b) shows that the experimental data with Srω � 0.1
and Re < 200 fall on to (2.15), apart from the data around Re = 5. As indicated in
table 1 the measurement uncertainty of CL is high at Re = 5. Figure 19(b) indicates
that an increase in Srω generally results in a decrease in CL. Up to liquid 7 (�, �)
CL increases; in liquids 8 and 9 the values of CL decrease. Figure 19(b) shows a
small increase in CL for liquid 9 (�, �) with respect to liquid 8 (�). In this liquid
we observe high sphere spin rates and thus can expect a strong Magnus-like effect,
increasing CL. When we correct the CL for excess spin as described in § 3.5 we find
the results indicated in figures 19(d ) and 20(d ). Now the decrease of the corrected
lift coefficient for higher Reynolds numbers is smooth. It is of course not clear
whether it is valid to assume the same effect of particle spin on the lift coefficient as
in (2.14) in this Reynolds range, since we have no numerical data to validate this.
However, these corrected results indicate a trend in the lift coefficient that is well worth
exploring.

In figures 19(b)–19(e) and 20(b)–20(d ) the dotted line at Re = 212 indicates the
transition in a uniform flow where the wake becomes non-axisymmetric. The dash-
dotted line at Re = 274 indicates the transition where the wake becomes unsteady.
The dashed lines in figures 20(b) and 20(d ) are the fits through the average values
of Re and CL in liquids 7–9. The number of data points used to determine these fits
is of course insufficient to allow more than an indication of a trend. However, it is
interesting to see where this trend crosses the numerical fit (2.15) for Re � 200. In
figure 20(b) the crossover is close to Re = 212 (the Reynolds number at which in a
uniform flow the wake loses its axisymmetry); in figure 20(d ) it is close to Re = 274
(the Reynolds number at which in a uniform flow the wake becomes unsteady). Since
Srω � 0.1 in this figure, we can expect perhaps a behaviour similar to that in a uniform
flow. Observing the Reynolds number at which CL starts to decrease, it is probable
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Figure 19. Drag coefficient, lift coefficient and normalized particle spin rate as a function of
Re. The spheres represent the numerical results. The solid line in (a) represents the standard
drag curve. The solid line in (b) represents the fit to the numerical data of the lift coefficient
(2.15). The solid lines in (c), (e) and (f ) represent the fit to the normalized spin rates from the
numerical data (2.13). The solid line in (d ) represents the fit to the numerical data of the lift
coefficient (2.15) with 3/16 (0.0045 Re) subtracted. The vertical dotted line at Re = 212 marks
the transition to a non-axisymmetric wake, and the vertical dash-dotted line at Re = 274
denotes the transition to a unsteady wake, both in case of a uniform flow. The other lines
function again as guides to the eye.
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Figure 20. Drag coefficient, lift coefficient and normalized particle spin rate as a function
of Re, for Srω � 0.1. The circles are numerical data, and the open triangles are experimental
data. The solid line in (a) represents the standard drag curve. The solid line in (b) represents
the fit to the numerical data of the lift coefficient (2.15) for Re < 200. The dashed line is a
fit to the average values per liquid: CL = −0.45 log10 Re + 2.37 for Re > 212. The solid
line in (c) represents the fit to the normalized spin rates from the numerical data (2.13). The
solid line in (d ) represents the fit to the numerical data of the lift coefficient (2.15) with
3/16 (0.0045 Re) subtracted. The dashed line is again a fit to the average values per liquid:
CL − 3/16 (ΩP /ω − 1) = −0.40 log10 Re + 2.18 for Re > 274. The vertical lines are as in
figure 19.

that some change in the wake structure of the sphere causes the decrease of CL (see
also the discussion of CL as a function of Ga in § 3.5).

Figures 19(f ) and 20(c) compare the experimentally observed sphere spin ratio
(ΩP /ω) to the numerical data and show again good agreement for 5 � Re � 127 and
Srω � 0.1. The solid lines in these figures represent the fit to the numerical data (2.13).
The experimental data follow the fit well up to liquid 6. The data in liquid 7 show a
sudden decrease compared to the numerical trend (figures 19c, 19e and 20c). Since
these data are beyond the Reynolds numbers at which the transitions in the wake in
a uniform flow occur, the decrease in ΩP /ω may be a consequence of changes in the
wake structure behind the sphere as well.

For liquids 7–9 the experimental data show effects that are not seen in the lower
Reynolds range: for high Srω, ΩP /ω is low, followed by a peak in each liquid as the
Srω decreases, after which ΩP /ω decreases (figure 19e). In figure 21 the spin rate is
plotted as a function of the vorticity parameter (indicating the distance to the cylinder
axis). For liquid 7 the peak in the spin rate is around Srω = 0.13, Re = 274. For liquids
8 and 9 the peak is around Srω = 0.18. For the last two liquids wake interaction
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Figure 21. Normalized particle spin rate as a function of the vorticity parameter.
Enlarged plot on the right-hand side.

(as described in the scenarios in § 3.4 and sketched in figure 10) is considered to be
the cause of the high ΩP /ω data points. The interaction depends on the wake length
and the proximity to the cylinder axis and thus on Re and Srω. For liquid 7, the
peak occurs for lower Srω. Here, instead of wake interaction, wake instability may
be the cause of the decrease in ΩP /ω. The initial increase of ΩP /ω may be because
of the increase in the Reynolds number. The spin rate then decreases when the wake
behind the particle becomes unsteady. This is supported by the value of Re at which
the decrease in ΩP /ω occurs (Re = 274, where in a uniform flow the wake becomes
unsteady) as well as by the relatively moderate decrease in ΩP /ω compared with that
in liquids 8 and 9. The particle spin rates in figure 20(c) show a large spread for
liquids 8 and 9 even though Srω � 0.1. It appears that Srω is a much more relevant
parameter to describe the sphere spin than Re for the liquids in the range Re > 200.

To evaluate the effect of the vorticity parameter Srω on the data we normalize each
data point by the value we find at the same Re and for no Srω (in the case of the
drag coefficient) or small Srω (in the case of the lift coefficient). For the drag, we do
this by normalizing the drag coefficients by the value of the standard drag curve at
the corresponding Reynolds number. Figure 22(a) shows the result for liquids 1–6
plotted versus Srω. It also shows an error estimate. Because it contains the error
not only in the drag coefficient but also in the Reynolds number, the error bars are
rather large. The overall trend shows a linear increase of CD/CD,standard with Srω.
Figure 22(b) shows the normalized drag coefficient for the data in liquids 7–9. Again
CD/CD,standard increases with Srω; however for liquids 8 and 9 there is a sudden strong
increase in the normalized drag coefficient around Srω =0.15. Comparing figure 22(b)
with figure 21 shows that this rise occurs for the data for which the particle spin is
strongly enhanced. As discussed above this is due to wake interaction which changes
the incident flow; thus, we are considering data here with a disturbed incident velocity.
However, the wake interacting with the sphere is expected to result in a decreased
drag (a shielding effect). Therefore the increase of the drag coefficient cannot be the
result of the disturbance of the flow field but is a result of the increase of the sphere
spin. Moreover, the rise in the drag coefficient is strongest for liquid 9, where also
the spin rates rise strongest. The linear shear flow results of Bagchi & Balachandar
(2002a) show that in their case the drag is not significantly influenced by the sphere
spin. However the spin of the sphere normalized by the rotation of the flow is always
below one in the case of a linear shear flow. We find values of ΩP /ω around 2.5 for
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Figure 22. Drag coefficient normalized by the standard drag coefficient and lift coefficient
normalized by (2.15) in (c) and by the fits from figures 20(b) and 20(d ) through
the average values of data with Srω � 0.1 and Re � 200 in (d ) and (e). For (a) and
(c) Re < 130; for (b), (d ) and (e) Re > 200. The solid lines are the fits to the
data. In (a), CD/CD,standard = 0.34Srω + 1; in (b), CD/CD,standard = 0.77Srω + 1. In
(d ), CL/CL,f it = −0.77Srω + 1; in (e), (CL − 3/16(ΩP /ω − 1))/CL,f it = −1.46Srω + 1.

liquid 9 and around 2 for liquid 8. Apparently, such high particle spin rates affect
the drag coefficient. After the steep increase in drag coefficient, CD appears to rise
linearly with Srω; however the data of different liquids no longer collapse on to the
same line. Figure 21 shows that for the higher values of Srω, liquid 9 displays higher
values of particle spin. This may be the cause of the higher CD values of liquid 9.
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Figure 22(c) shows the lift coefficients normalized by the value of the lift coefficient
for low Srω obtained by fitting the numerical data (2.15) as a function of Srω for
Re < 130. No apparent effect of Srω is clear from this figure. For the data with higher
Reynolds numbers, we have no prediction of what the lift coefficient should be for
low Srω; however we can use the fit of the average of the experimental data with low
Srω and high Re (the dashed line in figure 20b) to normalize CL. Figure 22(d ) shows
this normalized lift coefficient as a function of Srω for Re > 200. In this range we see
a clear trend: the lift coefficient decreases with the shear rate up to Srω = 0.4. After
that the curve flattens. For liquid 9 we see an anomaly for the data that have high
particle spin rates. The trend of the lift decreasing with Srω is even more apparent if
we study the lift coefficient, corrected by the particle spin (figure 22e). The corrected
lift coefficients are now normalized by the fit through the average of the corrected lift
coefficients with low Srω and high Re (the dashed line in figure 20d ). The anomaly
has now disappeared, and the data collapse better on to one line.

4. Summary and conclusions
We experimentally obtained the drag and lift coefficients for a sphere in a solid-body

rotating flow by measuring the equilibrium location of the sphere in the cylinder. The
data span the range 0.1 <Re � 1060. We compared these data to previously obtained
numerical data in the range 5 <Re � 200.

The Reynolds number, the vorticity parameter Srω (3.10) and, for the experimental
data, the Froude number, are all relevant dimensionless numbers for modelling the
forces on a sphere in this type of flow.

For Srω � 0.1 and 5 <Re < 1060 the experimental results for the drag coefficient
show an excellent agreement with the standard drag curve. For higher shear rates the
drag increases linearly with Srω.

Regarding the lift coefficient several conclusions can be drawn:
(i) For Srω = 0.1 and 5 <Re < 200 the results of the numerical simulations for non-

rotating and freely rotating spheres suggest that the lift coefficient can be decoupled
in a flow-induced part and a part that is due to the sphere spin (the Magnus-like
lift).

(ii) Both numerical simulations and experiments indicate a logarithmic increase of
the flow-induced lift coefficient with the Reynolds number for a freely rotating sphere
in a solid-body rotating flow in the range Srω � 0.1 and 5 <Re < 200. The vorticity
parameter has no substantial effect on CL if Re < 130. Contrary to the results for
bubbles in Van Nierop et al. (2007) no negative lift coefficients were observed for a
spinning sphere. The normalized particle spin rate rises linearly with Re and shows
good agreement with the numerical data up to Re ∼ 130 provided Srω � 0.1.

(iii) By introducing the Froude number it is possible to realize a collapse of the lift
coefficients on to a straight line.

For Reynolds numbers above 200 the dynamics becomes different. The excursion
of the sphere around its equilibrium position becomes larger. The experimentally
determined drag coefficients still follow the standard drag curve for data with
Srω � 0.1. However, the lift coefficient now decreases as a function of Re. It also
decreases with Srω, and the decrease is linear after the lift coefficients have been
corrected for particle spin. The sphere spin rate for data with Srω � 0.1 no longer
increases linearly with Re. The changes in the behaviour of the lift coefficient and
the sphere spin rate are attributed to changes in the structure of the wake behind the
sphere.
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The three experimental liquids in the higher-Reynolds-number regime all display a
peak in the spin rate. We ascribe this to the particle interacting with its own wake.
PIV images have shown that the wake is bent towards the cylinder axis. If the particle
is close to the axis, one side may be in the wake, and this will result in a high particle
spin. As the particle moves away from the cylinder axis, there is no longer interaction
with the wake, and the particle spin rate decreases. If the particle is very close to the
axis the incident flow is completely disturbed, and the spin rate is lowered.
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Appendix A. Tabulated experimental values

Liquid no. re (cm) φe ω (s−1) R (mm) ρ (g cm−3) CD CL ΩP /ω

1.00 3.13 3.11 1.26 3.97 0.93 16.70 0.07 1.00
1.00 3.09 3.12 1.26 3.97 0.93 17.13 0.23 1.00
1.00 2.53 3.10 1.57 3.97 0.93 16.35 −0.02 1.00
1.00 2.50 3.11 1.57 3.97 0.93 16.76 0.22 1.00
2.00 9.62 3.12 0.63 3.97 0.93 6.88 0.22 0.99
2.00 9.70 3.13 0.63 3.97 0.93 6.77 0.32 0.99
2.00 4.71 3.12 1.26 3.97 0.93 7.17 0.40 1.00
2.00 3.11 3.10 1.88 3.97 0.93 7.31 0.27 1.00
2.00 3.13 3.10 1.88 3.97 0.93 7.23 0.28 1.00
2.00 3.14 3.10 1.88 3.97 0.93 7.15 0.36 1.00
3.00 12.56 3.13 0.63 3.97 0.93 3.93 0.53 1.03
3.00 12.61 3.13 0.63 3.97 0.93 3.90 0.56 1.02
3.00 6.22 3.12 1.26 3.97 0.93 4.00 0.53 1.02
3.00 6.26 3.13 1.26 3.97 0.93 3.95 0.63 1.03
3.00 6.30 3.12 1.26 3.97 0.93 3.91 0.55 1.02
3.00 4.13 3.12 1.88 3.97 0.93 4.04 0.58 1.01
3.00 4.13 3.12 1.88 3.97 0.93 4.03 0.58 1.01
3.00 3.04 3.12 2.51 3.97 0.93 4.18 0.60 1.00
3.00 8.51 3.13 0.94 3.97 0.93 3.81 0.56 1.01
3.00 4.99 3.11 1.57 3.97 0.93 3.98 0.50 1.01
4.00 8.37 3.14 1.26 3.97 0.93 2.10 0.78 1.12
4.00 5.50 3.13 1.88 3.97 0.93 2.17 0.69 1.07
4.00 4.04 3.13 2.51 3.97 0.93 2.25 0.69 1.08
4.00 3.17 3.13 3.14 3.97 0.93 2.36 0.72 1.06
4.00 2.62 3.12 3.77 3.97 0.93 2.39 0.68 1.05
4.00 1.89 3.12 5.03 3.97 0.93 2.57 0.70 1.02
4.00 14.03 3.14 0.75 3.97 0.93 2.08 0.74 1.17
4.00 11.20 3.14 0.94 3.97 0.93 2.09 0.74 1.09
4.00 9.34 3.14 1.13 3.97 0.93 2.09 0.74 1.08
4.00 6.65 3.14 1.57 3.97 0.93 2.14 0.72 1.09
4.00 4.67 3.13 2.20 3.97 0.93 2.21 0.71 1.08
4.00 7.45 3.14 1.41 3.97 0.93 2.10 0.77 1.09

Table 2. Values of the experimental input parameters (liquid, ω, R, ρ), output parameters (re ,
φe , xe , ye , ΩP /ω) and calculated values of CD and CL.
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Liquid no. re (cm) φe (s−1) ω (mm) R (g cm−3) ρ CD CL ΩP /ω

4.00 1.53 3.12 6.28 3.97 0.93 2.51 0.71 1.00
5.00 10.50 3.17 1.26 3.97 0.93 1.26 0.94 1.26
5.00 6.88 3.17 1.88 3.97 0.93 1.31 0.87 1.23
5.00 5.14 3.18 2.51 3.97 0.93 1.32 0.86 1.21
5.00 4.06 3.18 3.14 3.97 0.93 1.35 0.85 1.20
5.00 2.31 3.16 5.03 3.97 0.93 1.63 0.79 1.11
5.00 13.89 3.17 0.94 3.97 0.93 1.28 0.97 1.27
5.00 8.34 3.17 1.57 3.97 0.93 1.28 0.88 1.26
5.00 11.94 3.16 1.10 3.97 0.93 1.27 0.90 1.26
6.00 11.71 3.22 1.26 3.97 0.93 0.94 1.14 1.46
6.00 7.71 3.23 1.88 3.97 0.93 0.97 1.07 1.44
6.00 5.64 3.25 2.51 3.97 0.93 1.02 1.03 1.40
6.00 3.59 3.23 3.77 3.97 0.93 1.11 0.91 1.34
6.00 15.78 3.20 0.94 3.97 0.93 0.93 1.16 1.46
6.00 9.40 3.23 1.57 3.97 0.93 0.94 1.11 1.46
6.00 2.00 3.15 6.28 3.97 0.93 1.30 0.76 1.16
7.00 13.32 3.28 1.26 3.97 0.93 0.64 1.32 1.48
7.00 13.30 3.28 1.26 3.97 0.93 0.64 1.30 1.50
7.00 8.62 3.30 1.88 3.97 0.93 0.68 1.20 1.54
7.00 6.10 3.31 2.51 3.97 0.93 0.76 1.11 1.59
7.00 4.90 3.34 3.14 3.97 0.93 0.75 1.10 1.58
7.00 4.71 3.29 3.14 3.97 0.93 0.82 1.03 1.56
7.00 3.13 3.26 4.40 3.97 0.93 0.94 0.92 1.46
7.00 2.42 3.23 5.65 3.97 0.93 0.96 0.85 1.37
7.00 10.48 3.31 1.57 3.97 0.93 0.66 1.29 1.50
7.00 7.24 3.31 2.20 3.97 0.93 0.70 1.16 1.54
7.00 1.91 3.16 6.91 3.97 0.93 1.04 0.77 1.28
7.00 12.93 3.28 1.26 3.97 0.93 0.68 1.33 1.48
7.00 6.14 3.32 2.51 3.97 0.93 0.75 1.14 1.59
7.00 3.82 3.30 3.77 3.97 0.93 0.86 1.00 1.54
7.00 2.74 3.26 5.03 3.97 0.93 0.95 0.90 1.42
8.00 12.97 3.26 1.26 3.97 0.93 0.53 1.13 1.19
8.00 8.42 3.30 1.88 3.97 0.93 0.55 1.10 1.38
8.00 5.78 3.34 2.51 3.97 0.93 0.65 1.11 1.67
8.00 4.37 3.32 3.14 3.97 0.93 0.74 1.02 1.92
8.00 3.02 3.22 4.40 3.97 0.93 0.80 0.84 1.74
8.00 2.26 3.12 5.65 3.97 0.93 0.87 0.73 1.54
8.00 10.26 3.28 1.57 3.97 0.93 0.54 1.12 1.29
8.00 7.05 3.32 2.20 3.97 0.93 0.58 1.11 1.50
9.00 10.29 3.27 1.26 3.97 0.93 0.44 1.03 1.36
9.00 6.40 3.33 1.88 3.97 0.93 0.50 1.04 1.59
9.00 4.11 3.33 2.51 3.97 0.93 0.68 1.01 2.31
9.00 3.17 3.26 3.14 3.97 0.93 0.74 0.88 2.10
9.00 2.57 3.28 3.77 3.97 0.93 0.78 0.88 1.94
9.00 13.94 3.24 0.94 3.97 0.93 0.43 1.04 1.28
9.00 8.04 3.32 1.57 3.97 0.93 0.46 1.06 1.48
9.00 4.71 3.37 2.20 3.97 0.93 0.67 1.10 2.46
9.00 3.57 3.29 2.83 3.97 0.93 0.72 0.94 2.14
9.00 5.32 3.41 2.04 3.97 0.93 0.61 1.17 2.30
9.00 1.35 3.02 6.28 3.97 0.93 1.02 0.67 1.51
9.00 3.04 3.31 2.83 3.18 0.94 0.56 0.91 N.A.
9.00 5.34 3.35 1.88 3.18 0.94 0.40 1.02 N.A.
9.00 2.15 3.16 3.77 3.18 0.94 0.64 0.76 N.A.
9.00 0.91 2.96 8.17 3.18 0.94 0.74 0.68 N.A.
9.00 0.73 2.92 10.05 3.18 0.94 0.75 0.68 N.A.
9.00 1.60 3.09 5.03 3.18 0.94 0.65 0.72 N.A.

Table 2. Continued.
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Naciri, M. A. 1992 Contribution à l’étude des forces exercées par un liquide sur une bulle de gaz:
portance, masse ajoutée et interactions hydrodynamiques. PhD thesis, L’Ecole Centrale de
Lyon, Ecully, France.

Rastello, M., Mari, J., Grosjean, N. & Lance, M. 2009 Drag and lift forces on interface-
contaminated bubbles spinning in a rotating flow. J. Fluid Mech. 624, 159–178.

Rubinov, R. & Keller, J. B. 1961 The transverse force on a spinning sphere moving in a viscous
fluid. J. Fluid Mech. 11, 447–459.

Sakamoto, H. & Haniu, H. 1995 The formation mechanism and shedding frequency vortices from
a sphere in uniform shear-flow. J. Fluid Mech. 287, 151–171.

Shaw, W. L., Poncett, S & Pinton, J. F. 2006 Force measurements on rising bubbles. J. Fluid Mech.
569, 51–60.

Van Nierop, E. A., Luther, S., Bluemink, J. J., Magnaudet, J., Prosperetti, A. & Lohse, D. 2007
Drag and lift forces on bubbles in a rotating flow. J. Fluid Mech. 571, 439–454.

Veldhuis, C. H. J., Biesheuvel, A., van Wijngaarden, L. & Lohse, D. 2005 Motion and wake
structure of spherical particles. Nonlinearity 18, C1–C8.

Zhang, Z. & Prosperetti, A. 2005 A second-order method for three-dimensional particle simulation.
J. Comput. Phys. 210, 292–324.


